Retrieval of Time-Varying Land Cover and Vegetation Properties from MODIS in Support of the NCEP-WRF Land Surface Model

Mark Friedl, Bruce Anderson, Xiaoyang Zhang, Feng Gao

Center for Remote Sensing
Boston University

Context

- Improved basis for land surface parameterization
 - MODIS
 - NCEP land Model
- Variables of Interest
 - Pseudo-static
 - ∠ Land Cover (UMD)
 - Time Varying
 - Fractional vegetation cover
 - ∠ Albedo; LAI

Project Objectives

- Two projects
 - 1. Current: 1 year, prototype data sets and methods
 - 2. Future: 2- year transition towards operational retrieval
- Four main goals:
 - 1. Develop land surface representation in which multiple sources of remote sensing inputs are portrayed in an internally consistent manner (including sub-grid stats).
 - 2. Develop methods to retrieve F_v from MODIS
 - 3. Develop methods for near-real-time retrieval of surface property suite from MODIS in support JCSDA
 - 4. To quantify differences in land surface properties from MODIS vs AVHRR vis-à-vis influence on NCEP land model
- Prepare for NPOESS Era

Outline

1. Background on MODIS

- Instrument
- Overview of data used to characterize land cover and land cover dynamics
- Standard products vs needs for assimilation in NWP models

2. Project activities

- Land cover and fractional vegetation cover
- Development of tools/data sets for spatial aggregation of land surface data

1. Background

MODIS

- Moderate Resolution Imaging Spectroradiometer
- Onboard EOS-Terra and EOS-Aqua
 - 10:30 AM (descending); 1:30 PM (ascending)
 local solar equatorial crossing
- Sun-synchronous, near polar orbit; 705.3 km

MODIS Instrument Characteristics

MODIS Instrument Characteristics

- 36 spectral bands, VNIR, SWIR, TIR (0.4–14 ?m)
- Spatial resolutions at 250-, 500-, and 1000-m (nadir) depending on waveband
- Scan angle: ±55°; 2330 km swath
- 2-day global repeat, 1-day or less poleward of 30°
- Onboard calibration; Band-to-band registration, etc.
- Improvement over heritage (AVHRR)

MODIS Land Bands

Band number	Spatial resolution	Wavelength, nm	Waveband region
1	250 m	620-670	Red
2	250 m	841-876	Near-infrared
3	500 m	459-479	Blue
4	500 m	545-565	Green
5	500 m	1230-1250	Near-infrared
6	500 m	1628-1652	Shortwave infrared
7	500 m	2105-2135	Shortwave infrared

Current efforts all use 1 km nadir BRDF adjusted reflectances. Future efforts will use 500 m NBARS data, once available.

UMD: University of Maryland

LAI/FPAR: Leaf Area Index/Fraction Absorbed Photsynthetically Active Radiation 4/12/2004 PFT: Plant Functional Types; BGC: Biome BGC

Global Sampling and STEP Maintenance

Database of ~2000 sites interpreted from Landsat and ancillary data including biophysical characterization

Sample Layer: UMD

Regional View

LAI/FPAR Plant Functional Types UMD

9 Urban and built-up

11 Barren or sparsely vegetated

10 Snow and ice

Unvegetated

Urban

12 Croplands

13 Urban and Built-Up

16 Barren or Sparsely Vegetated

Project Activities: 1. Land Surface Properties and Spatial Aggregation

Toolkit development

- MODIS data being produced at 1 km
 - ✓ Moving to 500m in next couple of years

Objective

- Software to spatially aggregate 1 km data to arbitrary spatial resolution
- Retaining sub-grid statistics by class
 Min, max, mean standard deviation, area (km²)
- Variables include: <u>land cover</u>, <u>LAI</u>, <u>albedo</u>, <u>fractional</u>
 <u>vegetation cover</u>

Land Surface Variables

- Z Land Cover
 - 14 class system defined by UMD
- Albedo
 - White sky, black sky, SZA @ solar noon
 - Broadband solar, VIS, Solar IR
- Leaf Area Index
- Fractional vegetation
 - Total vegetated area (F_v); green vegetated area (F_g)
- Prototype: North America

Prototype: North America, UMD Land Cover (0.25°)

Sub-Grid Percentage of Each Land Cover Type

100

4/12/2004

15

LAI Subgrid for Evergreen Needleleaf Forest (May 25 - June 1, 2001)

LAI Subgrid for Open Shrublands (May 25 - June 1, 2001)

Shortwave White-sky Albedo Subgrid for Evergreen Needleleaf Forest (May 25 - June 9, 2001)

Shortwave White-sky Albedo Subgrid for Evergreen Needleleaf Forest (May 25 - June 9, 2001) Cont.

Shortwave White-sky Albedo Subgrid for Open Shrublands (May 25 - June 9, 2001)

Number of Pixels in Subgrid for Albedo Statistics (May 25 - June 9, 2001)

Project Activities 2: Estimating F_v from MODIS

Basic Definitions

- F_v: fraction area covered with vegetation
- F_g: Fraction of F_v that is green

Current Approach

- Use time trajectory of NDVI
- Assume bare soil value (NDVI_{min}):

$$F_{v}(t)$$
? $\frac{NDVI_{t}?NDVI_{\min}}{NDVI_{\max}?NDVI_{\min}}$

Approach

- Issue wrt current work
 - Use of fixed NDVI_{min}
 - Correlated with LAI
 - Variability caused by view geometry & soil background
 - Snow contamination
- Present Strategy:
 - Exploit MODIS phenology product
 - Soil resistant/view angle corrected vegetation index (NBARS EVI)

Southwestern US

For this work:

- Use EVI
 - •Resistant to soil background
- Exploit phenology

Basic Approach

- Stratify Land Cover into
 - Evergreen
 - Other
- \bowtie For all evergreen $F_g = F_v$
 - Decouples LAI and F_v
- For deciduous vegetation:
 - Use historical database to define min-max range of EVI at each 1-km cell.

Estimate F

$$F_g(t)$$
? $\frac{EVI_t?EVI_{\min}}{EVI_{\max}?EVI_{\min}}$

- Advantages
 - Exploits phenology database
 - No fixed "soil" NDVI
 - Uses "soil-resistant" EVI
 - NBARs accounts for view geometry

Assessment

Baseline:

- Comparison of MODIS products with heritage:
 - **AVHRR**

Model assessment:

- Quantify how MODIS inputs affect NCEP/WRF simulations
- Offline sensitivity analysis
- Coupled (online) simulations

Future Work

Current Project

- Deliver code and prototype data sets for North America for testing at NCEP
- Finalize methodology for Fv; compare results with existing data sets.

Example 2 Future Activities

Development of retrieval strategies for albedo,
 F_v/F_g, LAI for near-real-time assimilation